Pelayo Arbués

Search

SearchSearch
  • Handling Mislabeled Tabular Data to Improve Your XGBoost Model
  • Metadata
  • Highlights

Recent Writing

  • Office hours

    Sep 04, 2023

  • The bitter feeling of publishing a Peer-Reviewed Paper Again

    May 17, 2023

  • Data Science Fundamentals

    Mar 06, 2023

See 5 more →

Recent Notes

  • Owl Drawing and Data Generation

    Dec 03, 2023

  • Radical Candor and Crucial Conversations

    Nov 21, 2023

  • Generating images with your LoRA like a Pro

    Nov 13, 2023

See 47 more →

Now Reading

  • A Visual and Intuitive Guide to What Makes ReLU a Non-Linear Activation Function

    Nov 30, 2023

See 429 more →

Handling Mislabeled Tabular Data to Improve Your XGBoost Model

Aug 25, 2023, 1 min read

  • #articles
  • #literature-note

Handling Mislabeled Tabular Data to Improve Your XGBoost Model §

rw-book-cover

Metadata §

  • Author: Chris Mauck
  • Full Title: Handling Mislabeled Tabular Data to Improve Your XGBoost Model
  • URL: handling-mislabeled-tabular-data-to-improve-your-xgboost-model-fbe051f4a6a6

Highlights §

  • This article highlights data-centric AI techniques (using cleanlab) to improve the accuracy of an XGBoost classifier (View Highlight)

Graph View

Backlinks

  • No backlinks found

Created with Quartz, © 2023

  • Twitter
  • Linkedin
  • Mastodon
  • Unsplash
  • GitHub
  • RSS